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Part 1:  Classic one-variable models in ecology and

evolution

Exponential  growth

Assumes  that  each  individual  replicates  at a constant  rate  over  time:

n[t + 1] = R n[t] Discrete-time  model  ("Recursion  equation ")

dn

dt
= n′[t] = r n[t] Continuous-time  model  ("Differential  equation ")

n[t]: The  population  size  at time  t 

R: The  number  of offspring  per  parent  in a time  unit  (from  t to t+1).

r: The  growth  rate  per  parent  per  time  unit.

Logistic  growth

Assumes  that  each  individual  replicates  at a rate  that  declines  as a linear  function  of the  current  popula -

tion  size:

n[t + 1] = 1 + r 1 -
n[t]

K
 n[t] Discrete-time  model

dn

dt
= n′[t] = r 1 -

n[t]

K
 n[t] Continuous-time  model

r:  The  "intrinsic"  growth  rate  per  parent  per  unit  time,  realized  when  competition  is weak  (popul -

ation  size  small)



K:  The  "carrying  capacity"  defined  as the  population  size  at which  competition  causes  the  popula -

tion  to neither  grow  nor  shrink

Haploid model of selection

Assumes  that  each  individual  carrying  A has  a fitness  of 1+s  relative  to individuals  carrying  a, where  p is 

the  frequency  of A:

p[t + 1] =
(1+s) p[t]

(1+s) p[t]+(1-p[t])
Discrete-time  model

dp

dt
= p′[t] = s p[t] (1 - p[t]) Continuous-time  model

p: Frequency  of allele  A at  a locus  with  two  alleles  (a and  A).  p must  lie  between  0 and  1.

s: Selection  coefficient  favoring  allele  A over  a.

Getting used to Mathematica

Mathematica can  be used  as a sophisticated  calculator.

For  example,  if r = 0.3,  K = 100,  and  n = 90 at some  time,  what  population  size  do  we  expect  in the  next  

generation  given  logistic  growth?

In[1]:= 1 + r 1 -
n

K
n /. n → 90 /. r → 0.3 /. K → 100

Out[1]= 92.7

Mathematica can  also  plot  functions.

For  example,  the  per  capita  number  of offspring  per  parent  in the  logistic  model:
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In[2]:= Plot  1 + r 1 -
n

K
/. r → 0.3 /. K → 100, {n, 0, 250},

PlotRange → {Automatic , {0, 1.5}}, AxesLabel → {"n", "kids"}

Out[2]= 
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In[3]:= Manipulate Plot  1 + r 1 -
n

K
, {n, 0, 250}, PlotRange → {Automatic , {0, 1.5}},

{{r, 0.3}, 0.01, 0.5}, {{K, 100}, 10, 200}

Out[3]= 
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Or the  number  of offspring  produced  by the  entire  population  in the  logistic  model:
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In[4]:= Manipulate Plot  1 + r 1 -
n

K
* n, {n, 0, 250}, PlotRange → {Automatic , {0, 200}},

{{r, 0.3}, 0.01, 0.5}, {{K, 100}, 10, 200}

Out[4]= 

r

K

0 50 100 150 200 250

50

100

150

200

The  real  power  of Mathematica, however,  is that  it can  handle  commands  involving  variables  and  

parameters  without  having  to specify  their  values.

For  example,  at what  population  size  do  we  see  the  largest  total  number  of offspring  produced  in the  

logistic  model?

In[5]:= D 1 + r 1 -
n

K
n, n

Out[5]= 1 -
n r

K
+ 1 -

n

K
r

In[6]:= Solve [% ⩵ 0, n]

Out[6]= n →
K (1 + r)

2 r


Question  1: At what  speed  does  an allele  rise in frequency?

Using  the  continuous-time  model,  plot  the  rate  of change   s p (1 - p)as a function  of p (between  0 and  

1).   Choose  whatever  numerical  value  of s you  wish.

Question  2: When  is evolutionary  change  fastest?
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Again,  using  the  continuous-time  model,  
dp

dt
= s p[t] (1 - p[t]), what  value  of p maximizes  the  rate  of 

allele  frequency  change?   Use  D[  ] to find  this  result  analytically,  for  any  possible  value  of s. 

Part 2:  Equilibria and their stability

Equilibria

DEFINITION:   An  equilibrium is a special  value  of a variable  such  that  if a system  starts  at that  value,  

it stays  there.

RECIPE:  We  find  equilibria  by:

* Setting  the  variable  at one  time  and  the  next  (n[t  + 1] and  n[t])  to the  same  equilibrium  value,  

n, (Discrete-time  model)

* Setting  the  change  in a variable  (
dn

dt
) to zero  when  started  at n, (Contin-

uous-time  model)

and  then  solving  for  the  value(s)  of n that  satisfy  the  resulting  equations.

E.g.,  in the  logistic  model,  if the  population  size  at time  t is n[t] = n , it will  remain  at this  value  only  if 

n[t + 1] = n .

This  gives  us an equation  that  we  can  solve  for  n, by  replacing  all  instances  of n with n  in  

n[t + 1] = 1 + r 1 -
n[t]

K
 n[t].

In[7]:= Solve n == 1 + r 1 -
n

K
n, n

Out[7]= n → 0, n → K

In[8]:= Solve [n == (1 + r (1 - n / K)) n, n]

Out[8]= {{n → 0}, {n → K}}

NOTE:   We  use  == instead  of = here  because  we  don't  want  to set  n equal  to the  right-hand  side,  we  

want  TO  TEST  when  the  le�  and  right  will  be  equal.

Similarly,  in continuous-time,  we  determine  what  value  of n causes  
dn

dt
= r 1 -

n[t]

K
 n[t] to equal  

zero:

In[9]:= Solve 0 == r 1 -
n

K
n, n

Out[9]= n → 0, n → K

Question  3: What  are the equilibria  for the haploid  model  of selection?
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Find  p  for  both  the  discrete-time  and  continuous-time  models:

p[t + 1] =
(1+s) p[t]

(1+s) p[t]+(1-p[t])
Discrete-time  model

dp

dt
= p′[t] = s p[t] (1 - p[t]) Continuous-time  model

First,  use  Mathematica to solve  for  p  analytically,  then  carry  out  the  calculations  by hand  to confirm  

your  answer.

Stability

A system  may  or may  not  move  toward  a particular  equilibrium.

DEFINITION:   An  equilibrium  is locally  stable  if a system  near  the  equilibrium  approaches  it (attrac -

ting).   An  equilibrium  is unstable if a system  near  the  equilibrium  moves  away  from  it (repelling).   

A local  stability  analysis  determines  whether  a system  that  starts  near  an equilibrium  moves  toward  

(stable)  or away  from  it (unstable).

The  idea:   We  approximate  the  dynamics  of a model  near  an equilibrium  and  then  determine  how  it 

moves.   To  do  so,  we  use  an incredibly  useful  approximation  tool:   the  Taylor  Series .

Taylor  series:   For  any  nicely  behaved  function,  f, of  a variable,  x[t],  we  can  write  the  function  

around  x as  a series  of terms,  x[t] - xi:

In[10]:= Series f[x[t]], x[t], x, 10 

Out[10]= f[x ] + f′
[x ] x[t] - x  +

1

2
f′′

[x ] x[t] - x 2 +
1

6
f3

[x ] x[t] - x 3 +

1

24
f(4)

[x ] x[t] - x 4 +
1

120
f(5)

[x ] x[t] - x 5 +
1

720
f6

[x ] x[t] - x 6 +
f(7) [x ] x[t] - x 7

5040
+

f8[x ] x[t] - x 8

40 320
+
f9[x ] x[t] - x 9

362 880
+
f10 [x ] x[t] - x 10

3 628 800
+ Ox[t] - x 11

For  example,  Sin[x]  can  be rewritten  as the  following  function  around  the  point  1/2:

In[11]:= Series [Sin[x], {x, 1 / 2, 4}]

Out[11]= Sin
1

2
 + Cos

1

2
 x -

1

2
-
1

2
Sin

1

2
 x -

1

2

2

-
1

6
Cos

1

2
 x -

1

2

3

+
1

24
Sin

1

2
 x -

1

2

4

+ Ox -
1

2
5

If we  are  close  enough  to the  point  of interest,  then  x[t] - xi  will  be  small,  and  we  can  drop  terms  

6     



that  we  consider  to be negligible.

Constant  approximation  (drops  x[t] - xi  for  i > 0):

In[12]:= const = Normal [Series [Sin[x], {x, 1 / 2, 0}]]

Out[12]= Sin
1

2


Linear  approximation  (drops  x[t] - xi  for  i > 1):

In[13]:= lin = Normal [Series [Sin[x], {x, 1 / 2, 1}]]

Out[13]= -
1

2
+ x Cos

1

2
 + Sin

1

2


Quadratic  approximation  (drops  x[t] - xi  for  i > 2):

In[14]:= quad = Normal [Series [Sin[x], {x, 1 / 2, 2}]]

Out[14]= -
1

2
+ x Cos

1

2
 + Sin

1

2
 -

1

2
-
1

2
+ x

2

Sin
1

2


In[15]:= Plot [{Sin[x], const, lin, quad}, {x, 0, Pi}, PlotRange → {Automatic , {0, 1}},

PlotStyle → {Automatic , Dashing [0.1], Dashing [0.04 ], Dashing [0.01 ]}]

Out[15]= 
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In a local  stability  analysis,  we  assume  that  we  are  near  an equilibrium,  and  use  the  Taylor  series  to 

approximate  the  recursion  or differential  equation,  f[n],  to linear  order:

In[16]:= Normal Series f[n[t]], n[t], n , 1
Out[16]= f[n ] + n[t] - n  f′

[n ]
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Describing  the  recursion  equation  as a function  (f),  where  n[t + 1] = f[n[t]], the  Taylor  series  tells  us 

that:

n[t + 1] ≈ f[n ] + n[t] - n f′[n ] (note  that  f′[n ] is the  derivative  of f with  respect  to n, evaluated  

at n :  df
dn


n=n

)

n[t + 1] ≈ n + n[t] - n f′[n ] (f[n ] = n  because  the  recursion  started  at an equilibrium  

returns  the  equilibrium)

n[t + 1] - n ≈ n[t] - n f′[n ] (moving  n  to the  le�)

so the  distance  to the  equilibrium  n[t] - n changes  by a factor  λ = f′[n ] each  generation.

Describing  the  differential  equation  as a function  (f),  where  
dn

dt
= f[n[t]], the  Taylor  series  tells  us that:

dn

dt
≈ f[n ] + n[t] - n f′[n ]

dn

dt
≈ 0 + n[t] - n f′[n ] (f[n ]=0 because  there  is no  change  at an equilibrium)

d n[t]-n 
dt

≈ n[t] - n f′[n ] (because  
d n[t]-n 

dt
=

d (n[t])

dt
-

d (n )
dt

=
d (n[t])

dt
- 0)

so the  distance  to the  equilibrium  changes  at a rate  r = f′[n ].
RECIPE:  To determine  the  stability  of an equilibrium:

* Take  the  derivative  of the  recursion  equation  with  respect  to the  variable,  
df

dn
, and  evaluate  at 

an equilibrium  λ =  df
dn


n=n

.

→  The  equilibrium  is stable  only  if -1<λ<1 (Discrete-time  

model)

If 1<λ,  equilibrium  is unstable  with  exponential  growth  away  from  it

If 0<λ<1,  equilibrium  is stable  with  exponential  growth  toward  it

If -1<λ<0,  equilibrium  is stable  with  damped  oscillations  toward  it

If λ<-1,  equilibrium  is unstable  with  growing  oscillations  away  from  it

 * Take  the  derivative  of the  differential  equation  with  respect  to the  variable,  
df

dn
, and  evaluate  

at an equilibrium  r =  df
dn


n=n

.

→  The  equilibrium  is stable  only  if r < 0 (Continuous-time  model)

If 0<r,  equilibrium  is unstable  with  exponential  growth  away  from  it

If r<0,  equilibrium  is stable  with  exponential  growth  toward  it

Repeat  for  each  equilibrium  of interest.

For  example,  consider  the  logistic  model  in discrete  time.   When  will  the  system  approach  n = 0, causing  

the  system  to go extinct?
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In[17]:= derivative = D 1 + r 1 -
n[t]

K
n[t], n[t]

Out[17]= 1 -
r n[t]

K
+ r 1 -

n[t]

K

In[18]:= λ = derivative /. n[t] → 0

Out[18]= 1 + r

For  λ to lie  between  -1 and  +1,  r must  lie  between  -2 and  0.  [Technically,  because  1+r  measures  the  

number  of offspring  per  parent  when  competition  is weak,  r cannot  fall  below  -1 or it becomes  biologi -

cally  meaningless.]

When  will  the  system  approach  n = K,  causing  the  system  to remain  stably  at carrying  capacity?

In[19]:= λ = derivative /. n[t] → K

Out[19]= 1 - r

This  will  be  greater  than  one  if: r<0 n=K is an unstable  equilibrium

This  will  be  between  0 and  1 if: 0<r<1 n=K is a stable  equilibrium

This  will  be  between  -1 and  0 if: 1<r<2 n=K is a stable  equilibrium  with  damped  oscillations

This  will  be  less  than  -1 if: r>2 n=K is an unstable  equilibrium  with  growing  oscillations

Question  4: What  determines  stability  of the equilibria  for the haploid  model  of 

selection?

Under  what  conditions  is p = 0 stable?  

Under  what  conditions  is p = 1 stable?  

You  can  use  either  the  discrete-time  or the  continuous-time  model:

p[t + 1] =
(1+s) p[t]

(1+s) p[t]+(1-p[t])
Discrete-time  model

dp

dt
= p′[t] = s p[t] (1 - p[t]) Continuous-time  model

Note  that,  in the  discrete-time  model,  the  fitness  of A individuals  is 1+s  times  greater  than  the  fitness  of 

a individuals,  where  1+s  must  be  positive  (fitness  can't  be  negative).

Part 3:  Beyond equilibria

General  solutions

Some  models  can  be solved  generally,  allowing  us to predict  the  future  state  at any  time  in the  future  
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and  how  this  depends  on  the  parameters.

DEFINITION:   A general  solution  describes  the  state  of a system  at any  future  point  in time.

There  are  many  methods  for  finding  general  solutions  (see  Chapters  6 & 9),  including  iterating  recur -

sions  to deduce  a general  rule  and  using  recipes  to solve  differential  equations  (e.g.,  separation  of 

variables).

Mathematica makes  it easy  to find  general  solutions  for  many  of the  simpler  models.

Recursion  equations:

In[20]:= RSolve [{n[t + 1] ⩵ R * n[t], n[0] ⩵ n0}, n[t], t]

Out[20]= n[t] → n0 Rt

NOTE:   Again,  we  use  == instead  of = here  because  we  don't  want  to set  n[t + 1] equal  to the  right-hand  

side,  we  want  TO  TEST  when  the  le�  and  right  will  be  equal.

In[21]:= RSolve p[t + 1] ==
(1 + s) p[t]

(1 + s) p[t] + (1 - p[t])
, p[0] ⩵ p0, p[t], t

Out[21]= p[t] → -
p0

-p0 -  1

1+s
t + p0  1

1+s
t



Differential  equations:

In[22]:= DSolve [{D[n[t], t] ⩵ R * n[t], n[0] ⩵ n0}, n[t], t]

Out[22]= n[t] → ⅇR t n0

In[23]:= DSolve [{D[p[t], t] == s p[t] (1 - p[t]), p[0] ⩵ p0}, p[t], t]

Solve : Inverse functions are being used by Solve , so some solutions may not be found ; use Reduce for complete

solution information .

Out[23]= p[t] →
ⅇs t p0

1 - p0 + ⅇs t p0


These  can  then  be used  to predict  where  the  system  will  be:
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In[24]:= Manipulate Plot 
ⅇs t p0

1 - p0 + ⅇs t p0
, {t, 0, 100}, PlotRange → {Automatic , {0, 1}},

{{s, 0.1}, -0.2, 0.2}, {{p0, 0.05}, 0.01, 0.99}

Out[24]= 

s

p0
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Question  5: Show  that  the logistic  model  in discrete  time  does  not have  a 

solution,  but the model  in continuous  time  does  and then  plot  this  solution.

Use:  

n[t + 1] = 1 + r 1 -
n[t]

K
 n[t] Discrete-time  model

dn

dt
= n′[t] = r 1 -

n[t]

K
 n[t] Continuous-time  model

Simulations

Some  models,  however,  are  too  complicated  to solve.   Some  cannot  be  solved  (e.g.,  the  logistic  in 

discrete  time),  while  others  may  not  be worth  the  time  needed  to obtain  a general  solution  when  all  

that  is needed  are  solutions  to specific  cases.

DEFINITION:   A simulation explores  a model  using  specific  parameter  values  and  initial  states  by 

applying  the  model's  equations  repeatedly.
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In[25]:= Clear [logistic ]

logistic [r_, K_, n0_, t_] := logistic [r, K, n0, t] =

Block [{n = logistic [r, K, n0, t - 1]},

n + r n (1 - n / K)

]

logistic [r_, K_, n0_, 0] = n0

Out[27]= n0

Some  notes:   

* Block  keeps  a set  of calculations  together,  defining  local  variables  in the  first  {}.   The  output  will  

be the  last  entry  of the  Block.

* := sets  the  le�  to the  right-hand  side  only  a�er  being  called  and  remembers  this  value.

* We  have  to set  a starting  point  or else  the  system  will  end  up  in an infinite  loop  going  backwards  

in time.

We  can  then  make  a table  of population  sizes:

In[28]:= Table [logistic [1.5, 100, 10, t], {t, 0, 100}]

Out[28]= {10, 23.5, 50.4663, 87.963, 103.845, 97.8556, 101.003, 99.4833, 100.254, 99.8719,

100.064, 99.968, 100.016, 99.992, 100.004, 99.998, 100.001, 99.9995, 100.,

99.9999, 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,

100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,

100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,

100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,

100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,

100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100. }

and  plot  this  list:

In[29]:= ListPlot [Table [logistic [1.5, 100, 10, t], {t, 0, 100}],

PlotRange → {{0, 100}, {0, 140}}, Joined → True ]

Out[29]= 

0 20 40 60 80 100
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40
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140

For  r values  between  0 and  2, we  see  a stable  equilibrium,  as we  would  expect  from  the  local  stability  
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analysis  of n = k.  For  2<r,  we  see  oscillations,  for  2.58<r,  chaotic  dynamics  are  observed,  while  for  3<r  

the  system  is driven  extinct.

Question  6: Simulating  extinction

Add  an If[  ] statement  to the  above  simulation  to return  zero  if ever  the  population  size  is predicted  to 

be negative.

Use  this  simulation  to explore  what  happens  with  r = 3.01  (generate  a table  as above,  and  ListPlot  it).

Numerical  solutions

Differential  equations  can  also  be solved  numerically  using  Mathematica's NDSolve  routines,  which  can  

work  even  for  models  that  cannot  be solved  analytically.

In[30]:= logisticD [r_, K_, n0_] := NDSolve D[n[t], t] == r 1 -
n[t]

K
n[t], n[0] ⩵ n0, n[t], {t, 0, 100}

In[31]:= logisticD [0.5, 100, 10]

Out[31]= n[t] → InterpolatingFunction  Domain : {{0., 100. }}

Output : scalar
[t]

Some  notes:   

* We  must  use  := here  because  we  don't  want  the  routine  to start  calculating  until  we  call  it with  

specific  values  of the  parameters.

* The  code  is very  similar  to DSolve,  except  that  we  must  specify  the  time  frame  over  which  we  

want  a solution  (here  0-100)

* When  we  do  call  the  function,  Mathematica tells  us  that  it has  represented  the  solution  as a

function,  which  we  can  interrogate.

We  can  then  evaluate  this  function  at specific  values  or in a plot:

In[32]:= Evaluate [logisticD [0.1, 100, 10] /. t → 20]

Out[32]= {{n[20] → 45.0853 }}
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In[33]:= Plot [Evaluate [(n[t] /. logisticD [0.1, 100, 10])], {t, 0, 100}]

Out[33]= 
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Part 4:  Example of building a model from scratch
Scenario:   Let's  model  the  number  of species  on  a large  landmass  over  long  periods  of evolutionary  

time,  where  the  number  of species  is primarily  influenced  by speciation  and  extinction  events  within  

the  landmass.   If extinction  risk,  d,  is constant  per  species  but  speciation  rate  declines  from  an initial  

value,  b,  exponentially  with  the  number  of species  already  present  (because  of competition  for  overlap -

ping  resources/niches),  then  develop  a model  that  might  describe  the  number  of species,  n, on  the  

landmass.

Part 5:  Extending to models with more than one variable
The  above  models  were  all  in one  variable  (e.g.,  the  population  size  or the  allele  frequency).   Fortu -

nately,  the  ideas  are  the  same  (but  the  methods  more  cumbersome)  with  models  involving  more  than  

one  variable.   As  an example,  let's  work  with  a model  of an alternation  of generations  between  haploids  

and  diploids.

Alternation  of generations  is a life  history  common  to many  algae,  in which  both  the  haploid  and  the  

diploid  phases  exist  as independently  growing  and  reproducing  organisms.

Haploid  individuals  (gametophytes)  produce  diploid  individuals  by  producing  haploid  gametes  that  

then  unite.

Diploid  individuals  (sporophytes)  produce  haploid  individuals  by  meiosis.

During  a year,  we  assume  that  parents  reproduce  and  then  die,  where:

a = the  number  of diploid  offspring  produced  per  haploid  parent
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b = the  number  of haploid  offspring  produced  per  diploid  parent

Then,  if h[t]  represents  the  number  of haploid  individuals  and  d[t]  the  number  of diploid  individuals,  we  

can  track  the  size  of both  populations  over  time  using  discrete-time  recursions:

Haploids:   h[t+1]  = b d[t]

Diploids: d[t+1]  = a h[t]

We  can  describe  analogous  procedures  for  continuous-time  models,  but  to keep  matters  simple,  we'll  

focus  here  only  on  discrete-time  models

Equilibria

An equilibrium  is defined  in the  same  way,  as a special  point  at which  the  system  stays  if started  there.   

The  only  trick  is to make  sure  that  all  of  the  variables remain  constant.

For  the  model  of alternating  generations:

In[34]:= Solve h == b d

, d

 ⩵ a h
, h, d



Out[34]= h → 0, d
 → 0

Here  we've  asked  Mathematica for  all  of  the  sets  of solutions  for  the  number  of haploids  and  diploids  

h, d
 that  cause  both  of these  values  to remain  constant  in the  next  generation.   The  answer  is that  

there's  only  one  equilibrium  point,  with  neither  haploids  or diploids.

Stability

To determine  stability,  we  need  to have  a multi-dimensional  analogue  of λ that  describes  the  factor  by 

which  the  distance  from  the  equilibrium  grows  each  generation.

Idea:   We  again  approximate  the  recursions  near  an equilibrium  point  using  the  Taylor  series,  but  we  

do this  for  each  recursion  equation  and  each  variable.   For  example,  if we  have  two  recursion  equa -

tions,  f and  g, describing  changes  in two  variables,  n and  m,  we  could  apply  the  Taylor  series  as before  

and  rearrange  the  results  as:

n[t + 1] - n = n[t] - n  df
dn


n,m

+ m[t] - m  df
dm


n,m

m[t + 1] - m = n[t] - n  dg
dn


n,m

+ m[t] - m  dg
dm


n,m

  

Book-keeping  is easier,  however,  and  we  can  use  the  power  of matrix  algebra,  if we  write  this  in matrix  

form:
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distance  to equilibrium  in next  generation  = stability  matrix  times  distance  to equilibrium  

in previous  generation

n[t + 1] - n
m[t + 1] - m   =  

df

dn

df

dm

dg

dn

dg

dm n ,m

n[t] - n
m[t] - m  

But  how  do  we  tell  if this  matrix  shrinks  the  distance  or expands  the  distance?

DEFINITION:  A matrix  involving  d variables  has  d eigenvalues  that  describe  the  factor  by which  the  

system  grows  along  different  directions  (called  eigenvectors).   The  leading  eigenvalue , λ, of  a matrix  

is the  largest  in magnitude  of these  eigenvalues,  and  it predicts  whether  the  matrix  stretches  (|λ|  > 1) 

or shrinks  (|λ|  < 1) a vector  that  it multiplies.   If λ is a complex  number,  the  system  will  cycle.

CAUTION:   When  calculating  the  stability  matrix,  decide  on  an order  for  the  variables  and  then  take  

the  derivative  of the  recursion  for  the  first  variable  in the  first  row  with  respect  to the  first  variable  in 

the  first  column.   Keep  the  order  of the  variables  the  same  for  all  subsequent  rows  and  columns.

For  example,  take  the  two  recursion  equations  for  the  haploid-diploid  model:

In[35]:= eqnh = b d[t];

eqnd = a h[t];

The  first  equation  gives  us h[t+1],  so we  must  take  the  derivatives  first  with  respect  to h[t]  and  then  d[t],  

and  then  evaluate  at the  equilibrium  of interest  (here  0,0):

In[37]:= matrix = {{D[eqnh, h[t]], D[eqnh, d[t]]},

{D[eqnd, h[t]], D[eqnd, d[t]]}} /. {h[t] → 0, d[t] → 0}

Out[37]= {{0, b}, {a, 0}}

The  eigenvalues  of which  are:

In[38]:= Eigenvalues [%]

Out[38]= - a b , a b 

Because  a and  b describe  the  number  of offspring,  these  eigenvalues  must  be positive.   The  magnitude  

of these  two  eigenvalues  is the  same,  |λ| = a b , which  tells  us that  the  system  will  move  away  from  

the  equilibrium  at {0,0}  only  if a b > 1, which  implies  that  the  product  of a and  b must  be greater  

than  one.

→  A haploid-diploid  species  can  grow  in size  even  if one  phase  produces  less  than

a replacement  number  of offspring  (e.g.,  a < 1),  as long  as the  other  phase  compensates  (e.g.,  b > 

1).
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Simulation

We  can  use  the  same  basic  code  as with  the  logistic  model  to track  the  size  of the  haploid  and  diploid  

populations.   The  only  difference  is that  the  result  is now  a vector  {h,d},  whose  first  part  is the  number  

of haploids  and  whose  second  part  is the  number  of diploids.

In[39]:= Clear [hapdip ]

hapdip [a_, b_, h0_, d0_, t_] := hapdip [a, b, h0, d0, t] =

Block [{h = Part [hapdip [a, b, h0, d0, t - 1], 1], d = Part [hapdip [a, b, h0, d0, t - 1], 2]},

{b d, a h}

]

hapdip [a_, b_, h0_, d0_, 0] := {h0, d0}

Some  notes:   

* Block  keeps  a set  of calculations  together,  defining  local  variables  in the  first  {}.  The  output  will

be the  last  entry  of the  Block.

* := sets  the  le�  to the  right-hand  side  only  a�er  being  called  and  remembers  this  value.

* We  have  to set  a starting  point  or else  the  system  will  end  up  in an infinite  loop  going  backwards  

in time.

We  can  then  make  a table  of population  sizes  for  {haploids,  diploids}:
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In[42]:= Table [hapdip [0.7, 1.5, 10, 10, t], {t, 0, 100}]

Out[42]= {{10, 10}, {15., 7.}, {10.5, 10.5 }, {15.75, 7.35 }, {11.025, 11.025 },

{16.5375, 7.7175 }, {11.5762, 11.5762 }, {17.3644, 8.10337 }, {12.1551, 12.1551 },

{18.2326, 8.50854 }, {12.7628, 12.7628 }, {19.1442, 8.93397 }, {13.401, 13.401 },

{20.1014, 9.38067 }, {14.071, 14.071 }, {21.1065, 9.8497 }, {14.7746, 14.7746 },

{22.1618, 10.3422 }, {15.5133, 15.5133 }, {23.2699, 10.8593 }, {16.2889, 16.2889 },

{24.4334, 11.4023 }, {17.1034, 17.1034 }, {25.6551, 11.9724 }, {17.9586, 17.9586 },

{26.9378, 12.571 }, {18.8565, 18.8565 }, {28.2847, 13.1995 }, {19.7993, 19.7993 },

{29.699, 13.8595 }, {20.7893, 20.7893 }, {31.1839, 14.5525 }, {21.8287, 21.8287 },

{32.7431, 15.2801 }, {22.9202, 22.9202 }, {34.3803, 16.0441 }, {24.0662, 24.0662 },

{36.0993, 16.8463 }, {25.2695, 25.2695 }, {37.9043, 17.6887 }, {26.533, 26.533 },

{39.7995, 18.5731 }, {27.8596, 27.8596 }, {41.7894, 19.5017 }, {29.2526, 29.2526 },

{43.8789, 20.4768 }, {30.7152, 30.7152 }, {46.0729, 21.5007 }, {32.251, 32.251 },

{48.3765, 22.5757 }, {33.8635, 33.8635 }, {50.7953, 23.7045 }, {35.5567, 35.5567 },

{53.3351, 24.8897 }, {37.3346, 37.3346 }, {56.0018, 26.1342 }, {39.2013, 39.2013 },

{58.8019, 27.4409 }, {41.1614, 41.1614 }, {61.742, 28.8129 }, {43.2194, 43.2194 },

{64.8291, 30.2536 }, {45.3804, 45.3804 }, {68.0706, 31.7663 }, {47.6494, 47.6494 },

{71.4741, 33.3546 }, {50.0319, 50.0319 }, {75.0478, 35.0223 }, {52.5335, 52.5335 },

{78.8002, 36.7734 }, {55.1602, 55.1602 }, {82.7402, 38.6121 }, {57.9182, 57.9182 },

{86.8772, 40.5427 }, {60.8141, 60.8141 }, {91.2211, 42.5698 }, {63.8548, 63.8548 },

{95.7822, 44.6983 }, {67.0475, 67.0475 }, {100.571, 46.9333 }, {70.3999, 70.3999 },

{105.6, 49.2799 }, {73.9199, 73.9199 }, {110.88, 51.7439 }, {77.6159, 77.6159 },

{116.424, 54.3311 }, {81.4967, 81.4967 }, {122.245, 57.0477 }, {85.5715, 85.5715 },

{128.357, 59.9001 }, {89.8501, 89.8501 }, {134.775, 62.8951 }, {94.3426, 94.3426 },

{141.514, 66.0398 }, {99.0597, 99.0597 }, {148.59, 69.3418 }, {104.013, 104.013 },

{156.019, 72.8089 }, {109.213, 109.213 }, {163.82, 76.4493 }, {114.674, 114.674 }}

or plotting  haploids  in red  and  diploids  in blue:

In[43]:= ListPlot [{Table [Part [hapdip [0.7, 1.5, 10, 10, t], 1], {t, 0, 100}],

Table [Part [hapdip [0.7, 1.5, 10, 10, t], 2], {t, 0, 100}]},

Joined → True, PlotStyle → {Red, Blue}]

Out[43]= 
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Notice  that  in this  case  the  diploids  have  higher  reproductive  capacity  (1.5  offspring  on  average),  yet  it 

is the  haploid  population  size  that  grows  to a larger  size.   This  is,  of  course,  because  diploids  beget  

haploids.

A case with complex  eigenvalues  [EXTRA]

Some  systems  cycle  over  time.   As  an example,  let's  consider  the  classic  predator-prey  model.

Let  H[t]  represent  the  numbers  of prey  and  P[t]  represent  the  numbers  of predators.   The  prey  are  

assumed  to grow  exponentially,  but  they  are

captured  by predators  at a rate  that  depends  on  both  the  availability  of prey  and  predators.

The  discrete-time  recursions  are  thus:

Prey:   H[t+1]  = H[t]  + r H[t]  - b H[t]  P[t]

Predator: P[t+1]  = P[t]  + c H[t]  P[t]  - d P[t]

which  uses  the  following  parameters:

the  growth  rate  of the  prey  in the  absence  of the  predator  (r),

the  capture  rate  at which  predators  contact  and  kill  prey  (b),

the  rate  at which  eaten  prey  are  turned  into  predator  babies  (c),

and  the  death  rate  of predators  (d).

Question  7:  What  are  the  equilibria  of this  model?

In[44]:= Solve { ...}, H, P


Syntax : "Solve [" cannot be followed by "{ ... }, H

, P

".

Here  we've  asked  Mathematica for  all  of  the  sets  of solutions  for  the  number  of prey  and  predators  

H, Pthat  cause  both  of these  values  to remain  constant  in the  next  generation.

Question  8:  Under  what  conditions  is the  equilibrium  with  both  species  present  stable?

In[44]:= eqn1 = H[t] + r H[t] - b H[t] × P[t];

eqn2 = P[t] + c H[t] × P[t] - d P[t];

In[46]:= matrix = { ...}

Syntax : "matrix =" cannot be followed by "{ ... }".

Let's  consider  the  stability  of the  equilibrium  with  both  prey  and  predators  present:

In[46]:= matrix /. {H[t] → ..., P[t] → ...}

Syntax : "{" cannot be followed by "H[t]→ ... , P[t]→ ... }".
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In[46]:= Eigenvalues [%]

Out[46]= Eigenvalues [P[t] - d P[t] + c H[t] × P[t]]

The  answer  will  involve  a complex  number,  where  ⅈ = -1 .  The  above  eigenvalues  can  be written  

more  simply  as {1 + ⅈ d r , 1 - ⅈ d r }.  Note  that  the  death  rate  of predators  (d)  and  the  intrinsic  

growth  rate  of prey  (r)  can  be assumed  to be positive  in this  model,  so these  eigenvalues  are  complex  

numbers.

The  recipe  for  discrete-time  models  remains  the  same:   we  find  the  absolute  magnitude  of the  eigen -

value,  |λ|,  and  if it is greater  than  one  then  the  system  is unstable.   (The  rule  is slightly  different  for  

continuous-time  models.   See  Chapter  8.)

DEFINITION:  The  absolute  magnitude  of a complex  number  is 

λ = (real part )2 + (complex part )2 . 

Here,  the  real  part  is "1"  and  the  complex  part  is the  part  " d r " multiplying  ⅈ = -1 .  So  the  magni -

tude  of both  eigenvalues  is (1)2 +  d r 2 , or  just  1 + d r , which  must  be a number  greater  

than  one.

→  The  predator-prey  model  will  cycle  (because  λ is complex)  and  expand  away  

from  the  equilibrium  at H[t] → d

c
, P[t] → r

b
 (because  |λ| > 1).

We  can  use  the  same  basic  code  again  to track  the  prey  and  predator  population  sizes.

In[47]:= predprey [r_, b_, c_, d_, H0_, P0_, t_] := predprey [r, b, c, d, H0, P0, t] =

Block [{H = Part [predprey [r, b, c, d, H0, P0, t - 1], 1],

P = Part [predprey [r, b, c, d, H0, P0, t - 1], 2]},

{H + r H - b H P, P + c H P - d P}

]

predprey [r_, b_, c_, d_, H0_, P0_, 0] := {H0, P0}

We  can  then  make  a table  of population  sizes  for  {prey,  predators}:
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In[49]:= Table [predprey [0.7, 0.01, 0.0001, 0.1, 900, 70, t], {t, 0, 100}]

Out[49]= {{900, 70}, {900., 69.3 }, {906.3, 68.607 }, {918.925, 67.9642 }, {937.633, 67.4131 },

{961.888, 66.9927 }, {990.815, 66.7374 }, {1023.14, 66.6761 }, {1057.15, 66.8304 },

{1090.66, 67.2123 }, {1121.06, 67.8216 }, {1145.48, 68.6427 }, {1161.03, 69.6413 },

{1165.19, 70.7628 }, {1156.31, 71.9317 }, {1133.97, 73.0561 }, {1099.32, 74.0348 },

{1054.96, 74.7701 }, {1004.64, 75.181 }, {952.587, 75.2159 }, {902.901, 74.8593 },

{859.027, 74.1324 }, {823.528, 73.0873 }, {798.103, 71.7975 }, {783.757, 70.348 },

{781.03, 68.8267 }, {790.194, 67.3196 }, {811.373, 65.9072 }, {844.581, 64.6641 },

{889.648, 63.659 }, {946.06, 62.9566 }, {1012.69, 62.617 }, {1087.46, 62.6965 },

{1166.89, 63.2448 }, {1245.71, 64.3003 }, {1316.71, 65.8802 }, {1370.96, 67.9667 },

{1398.83, 70.488 }, {1392.01, 73.2993 }, {1346.08, 76.1727 }, {1262.99, 78.8089 },

{1151.74, 80.8815 }, {1026.41, 82.1088 }, {902.124, 82.3256 }, {790.932, 81.5198 },

{699.818, 79.8155 }, {631.127, 77.4196 }, {584.3, 74.5638 }, {557.634, 71.4642 },

{549.469, 68.3029 }, {558.794, 65.2256 }, {585.473, 62.3478 }, {630.275, 59.7633 },

{694.794, 57.5537 }, {781.27, 55.7971 }, {892.233, 54.5767 }, {1029.84, 53.9885 },

{1194.74, 54.1497 }, {1384.11, 55.2042 }, {1588.9, 57.3246 }, {1790.3, 60.7004 },

{1956.79, 65.4976 }, {2044.89, 71.7643 }, {2008.81, 79.2629 }, {1822.74, 87.259 },

{1508.15, 94.4381 }, {1139.59, 99.237 }, {806.406, 100.622 }, {559.466, 98.6743 },

{399.043, 94.3274 }, {301.967, 88.6587 }, {245.624, 82.47 }, {214.994, 76.2487 },

{201.56, 70.2631 }, {201.03, 64.653 }, {211.779, 59.4874 }, {234.042, 54.7985 },

{269.62, 50.6012 }, {321.923, 46.9054 }, {396.27, 43.7248 }, {500.391, 41.085 },

{645.078, 39.0324 }, {844.844, 37.647 }, {1118.18, 37.0629 }, {1486.47, 37.5009 },

{1969.56, 39.3252 }, {2573.72, 43.138 }, {3265.07, 49.9267 }, {3920.48, 61.2355 },

{4264.09, 79.1192 }, {3875.24, 104.944 }, {2521.06, 135.118 }, {879.388, 155.671 },

{126.011, 153.793 }, {20.4225, 140.352 }, {6.05492, 126.603 }, {2.62765, 114.02 },

{1.47097, 102.648 }, {0.990734 , 92.3979 }, {0.768831 , 83.1672 }, {0.667597 , 74.8569 }}

or plotting  prey  in red  and  predators  in blue:

In[50]:= ListPlot [{Table [Part [predprey [0.7, 0.01, 0.0001, 0.1, 900, 70, t], 1], {t, 0, 100}],

Table [Part [predprey [0.7, 0.01, 0.0001, 0.1, 900, 70, t], 2], {t, 0, 100}]},

Joined → True, PlotStyle → {Red, Blue}, PlotRange → All]

Out[50]= 
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I purposely  started  this  near  the  equilibrium  (1000,70),  otherwise  it cycles  out  so fast  that  it crashes  and  

burns  very  quickly.   Even  here,  the  prey  go extinct  by  the  end  of this  100-generation  simulation.

We  can  also  present  this  graph  as a phase-diagram,  where  the  number  of predators  (y-axis)  is plotted  

against  the  number  of prey  (x-axis):

In[51]:= ListPlot [Table [{Part [predprey [0.7, 0.01, 0.0001, 0.1, 900, 70, t], 2],

Part [predprey [0.7, 0.01, 0.0001, 0.1, 900, 70, t], 1]}, {t, 0, 100}],

Joined → True, PlotStyle → {Red, Blue}, PlotRange → All, AxesOrigin → {0, 0}]

Out[51]= 
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Accounting  for randomness  [EXTRA]

In all  of  the  above  models,  we've  assumed  that  the  state  of the  system  can  be precisely  predicted  in the  

next  time  step.   Such  models  are  called  "deterministic".   In natural  systems,  there  is always  a degree  of 

randomness  or stochasticity  to life.   For  example,  even  if the  average  number  of offspring  per  parent  

were  2.3,  the  actual  number  will  be  an integer  (0,1,2,3...).    

The  offspring  number  might,  for  instance,  represent  a random  draw  of the  Poisson  distribution  with  a 

certain  mean  (here  2.3):

In[52]:= RandomInteger [PoissonDistribution [2.3]]

Out[52]= 1

We  can  incorporate  such  randomness  (called  "demographic  stochasticity")  into  the  above  ecological  

models  by having  the  number  of offspring  be drawn  from  a Poisson:
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In[53]:= Clear [hapdip ]

hapdip [a_, b_, h0_, d0_, t_] := hapdip [a, b, h0, d0, t] =

Block [{h = Part [hapdip [a, b, h0, d0, t - 1], 1], d = Part [hapdip [a, b, h0, d0, t - 1], 2]},

numhap = If[b d > 0, RandomInteger [PoissonDistribution [b d]], 0];

numdip = If[a h > 0, RandomInteger [PoissonDistribution [a h]], 0];

{numhap, numdip }

]

hapdip [a_, b_, h0_, d0_, 0] := {h0, d0}

Some  notes:   

* Block  keeps  a set  of calculations  together,  defining  local  variables  in the  first  {}.   The  output  will  

be the  last  entry  of the  Block.

* := sets  the  le�  to the  right-hand  side  only  a�er  being  called  and  remembers  this  value.

* We  have  to set  a starting  point  or else  the  system  will  end  up  in an infinite  loop  going  backwards  

in time.

* The  Poisson  distribution  can  be evaluated  by Mathematica only  if the  expected  number  is posi -

tive.   This  will  cause  problems  if the  population  ever  goes  extinct  (expectation  is zero).   The  If state -

ments  says  to draw  a random  number  from  the  Poisson  only  if the  expected  number  is positive.  

We  can  then  make  a table  of population  sizes  for  {haploids,  diploids}:

In[56]:= Table [hapdip [0.7, 1.5, 10, 10, t], {t, 0, 100}]

Out[56]= {{10, 10}, {13, 5}, {6, 8}, {10, 1}, {1, 6}, {13, 1}, {1, 17}, {26, 0}, {0, 14}, {15, 0},

{0, 9}, {11, 0}, {0, 4}, {3, 0}, {0, 2}, {3, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0},

{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0},

{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0},

{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0},

{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0},

{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0},

{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0},

{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}

or plotting  haploids  in red  and  diploids  in blue:
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In[57]:= ListPlot [{Table [Part [hapdip [0.7, 1.5, 10, 10, t], 1], {t, 0, 100}],

Table [Part [hapdip [0.7, 1.5, 10, 10, t], 2], {t, 0, 100}]},

Joined → True, PlotStyle → {Red, Blue}]

Out[57]= 
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Reenter  this  sub-directory  a few  times  to see  how  the  plots  change  due  to demographic  stochasticity.   

Occassionally,  you'll  see  the  whole  population  go extinct,  despite  the  fact  that  we  expect  it to grow  

with  a = 0.7  and  b = 1.5.

To learn  more  about  probability  theory  and  stochastic  models  (both  analytical  and  simulation-based  

methods),  read  Primer  3 and  Chapters  13-15.

Part 6:  Another example of building a model from scratch
Scenario:   Consider  two  types  of individuals  that  can  help  one  another  to raise  a brood  (e.g.,  one  type  

might  be better  at detecting  predators  and  the  other  type  at collecting  food).   Assume  that  neither  of

the  two  types  would  be able  to grow  on  their  own,  with  the  number  of offspring  per  parent,  1-r1  and  1-

r2,  respectively,  being  less  than  one.   Through  cooperation,  however,  the  per  capita  growth  of each  

type  rises  linearly  with  the  number  of the  other  type,  with  slopes  ρ1 and  ρ2.
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Appendix: Quick reference to Mathematica

Getting started

In[58]:= Help -> Documentation  Center    - Can be used to search  for commands  of interest

?Command   - gives a fairly  detailed  description  of a command,  e.g.,  ?Plot tells you all about  this command.   

You can use * as a wildcard,  for instance  ?*Plot* gives a list of all commands  with Plot in their  name.  

More help can be found  in the menu  under  "Help",  in the Function  Navigator  or Documentation  Center.

*   - Times  command  (2*3 gives 6).  Spaces  can also be used but be careful  (e.g, a=2 3 gives six

but a=23 gives twenty-three)

^   - Power  command  (2^3 gives 8)

n!  - factorial  (3! gives 6)

{}  - denotes  a list, e.g.,  {2,3,4}

()  - Places  variables  together,  e.g.,  (1+x )/(1-x ) takes  1+x over 1-x

[]  - Generally  used to denote  that something  is a function  of something  else

%# - grabs  previous  output  number  #.

% - grabs  the previous  line of output  regardless  of the number

%% - grabs  output  two lines back.   Note:  naming  outputs  is safer  (see next section).

f /. object1  -> object2   

           - tells Mathematica  to make replace  object1  with object2  in the function

          e.g.,   3*x^2 /. x -> 2*y+z gives  3*(2*y + z)^2        

          

Syntax : Incomplete expression ; more input is needed .

Avoiding  conflict  with Mathematica

Mathematica tends  to use  capital  letters  for  its  functions,  so its  o�en  a good  idea  to use  

lower  case  names  for  your  functions  and  variables.

If you  refer  to previous  entries  using  %,  it can  be difficult  to know  exactly  what  your  

previous  entry  was.   It is safer  to assign  a name  to the  output  and  then  refer  to this  name  later.

For  example,

In[58]:= myderivative = D[a Sin[b x], x]

Out[58]= a b Cos[b x]
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In[59]:= Plot [myderivative /. a → 1 /. b → 3, {x, 0, 10}]

Out[59]= 
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Functions  and constants  in Mathematica

(A small fraction!)

Abs[x]  - Takes  the  absolute  value  of x

E   - The  exponential  constant  2.71838.   E^(x) can  be invoked  using  Exp[x]

I   - The  square  root  of negative  1.

Infinity   - Self-explanatory.

Log[x]   -Takes  the  natural  log  of x

Log[b,x]   -Takes  the  log  of x in base  b

Pi   - 3.14159...

Sin[x],  Cos[x],  Tan[x]   - trigonometric  functions

ArcSin[x],  ArcCos[x],  ArcTan[x]  -  inverse  trigonometric  functions

Sqrt[x]   - Square  root
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Writing equations  in Mathematica

In[60]:= x=y   - Sets x to y immediately  and from then on (use Clear[x] to unassign  x ), e.g.,  plot1=Plot[x^2,{x,0,10}]

x:=y   - Does nothing  until  x is called,  at which  point  x is assigned  the value y

x==y    - Tests  whether  x equals  y BUT makes  no assignment

f[x_]:=  - This is how you define  a function  (called  "f") of x, e.g.,  f [x_] := x^2

f[x] - This gives the function  evaluated  at x, e.g.,  f[3] gives 9 in the above  example

f[x_,y_,...]=  - This is how you define  a function  of several  variables

Syntax : Incomplete expression ; more input is needed .

A list of helpful  commands

Clear[symbol1,symbol2,...] - clears  variable  or function  definitions,  

e.g.,  Clear[x,  y, pop1]

Clear[“Global`*”]  - clears  all  variable  or function  definitions  from  memory

Collect[eqn,{terms},Factor] - collects  parts  of an equation  involving  “terms”  and  

factors  them  separately  (if  only  one  “term”,  the  braces  aren’t  needed)

e.g.  Collect[ a - b + a x - 2 b x + a2 x2 + 2 a b x2 + b2 x2, x, Factor]

D[f,x]   - takes  the  partial  derivative  of f with  respect  to x - e.g.  D[x^2+y  Log[x],  x]

D[f,  {x,  n}]    - takes  the  nth  derivative  with  respect  to x - e.g.   D[x^2+y  Log[x],{x,2}]

DSolve[eqn,  y[x],x]    - solves  differential  equation  for  y as a function  of x 

(SYMBOLICALLY)  e.g.  DSolve[{y'[x]  == k y[x],  y[0]==y0,  y[x],x]

DSolve[eqns,  {y1,y2,y3,..},  x]  same  as above  but  for  a system  of eqns  

e.g.  pred-prey  equations  DSolve[{y'[x]  == k y-x,  z'[x]==x+z},  {y[x],z[x]},  x]

NDSolve[eqns,  y, {x,  xmin,xmax}]  - same  as DSolve  but  seeks  solution

NUMERICALLY  - e.g.  NDSolve[{y'[x]  ==4  y[x],  y[3]==62},  y[x],  {x,  0,20}]

Expand[expr]- expands  an expr  e.g.  Expand[(1+x)^2]  gives  1+2x+x^2

Evaluate[object] - evaluates  a symbolic  object  like  interpolating  functions
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Factor[polynomial] - self  explanatory  - e.g.  Factor[x^2  + 2 x + 1]

FindRoot[eqn1==eqn2,  {x,  x0}]  - searches  for  numerical  root  of eqn1==eqn2

            starting  at x0 e.g.  FindRoot[Log[x]  + x + Arctan[x]  == 0, {x,  4}]  tries  to find  

            x that  satisfies  this  very  ugly  - impossible  to solve  by hand  equation,  starting  at x=4.

For[start,test,increment,body] - repeats  procedure  “body”,  starting  from  “start”   

until  the  “test”  condition  is met,  adding  “increment”  each  time,  

e.g.,  For[i=1,  i≤10, i=i+1,  Print[i]]  prints  out  integers  1 through  10.

Integrate[f,x] - finds  indefinite  integral  of f with  respect  to x 

e.g.,  Integrate[Log[x],  x]

Integrate[f,  {x,  xmin,  xmax}]  - computes  definite  integral  from  xmin  to xmax

e.g.,  Integrate[Log[x],  {x,  1,6}]

ListPlot[list]  - plots  a list  of integers,  e.g.,  ListPlot[{2,4,3,5,4}]

ListPlot[{{x1,  y1},{x2,  y2},...}]  - plots  a series  of {x,  y} values,

e.g.,  ListPlot[{{1,2},{2,1},{5,7}}]  To join  the  points  with  a line  use:

 ListPlot[{{1,2},{2,1},{5,7}},PlotJoined->True]  (in Mathematica 5)

 ListPlot[{{1,2},{2,1},{5,7}},Joined->True]  (in more  recent  versions)

N[f] - gives  a numerical  value  for  an expression  - e.g.  N[Pi]  gives  3.14159

Part[eqn,i] - grabs   the  ith  part  of eqn,  e.g.,  Part[3x^2+x^3,2]  gives  x^3

Plot[f,{x,xmin,xmax}] - plots  f versus  x on  the  interval  [xmin,xmax]  

            e.g.,  Plot[x^2,  {x,0,2}]    NOTE:  Plot  has  lots  of options  e.g.  AxesLabel,

            Grid,  AxesOrigin,  etc.  See  the  manual  for  a complete  list  and  usage  

            e.g.,   Plot[x^2,  {x,0,2},  PlotStyle->Dashed]  makes  a dashed  curve.

Plot3D[f,  {x, xmin, xmax }, {y, ymin, ymax }] - makes  a 3D  plot  of f

Show[graphics,  options]  - displays  graphic  objects  using  options  e.g.  

Show[popplot1,  PlotJoined->True]

Simplify[expr] - does  its  best  to simplify  an expression,  expr
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Solve[eqns,  vars]  - tries  to solve  one  or a system  equations  for  the  vars  specified  

(SYMBOLICALLY)-  e.g.  Solve[{x+y  ==1,  x-y  ==4},  {x,y}]

NSolve[eqns,  vars]  - does  the  same  thing  as  Solve,  but  does  it NUMERICALLY

(See  also  FindRoot)

Sum[f,  {i,  imin,  imax}]  - sums   f from  i to imax  i.e.  f[1]  + f[2]  + f[3]  + ...  

            (only  really  interesting  if f depends  on  i) - e.g.  Sum[i,  {i,  1,4}]  gives  10.

            

Reduce[{eqns}] - can  be used  to determine  if a statement  is true  or false  

e.g.,  Reduce[{a  + b > 1, a < 0, b < 0}]

RSolve[eqns,  vars]  - solves  a discrete-time  equation  for  y as a function  of x 

(SYMBOLICALLY)  e.g.  RSolve[{n[t+1]  == R n[t],  n[0]==n0},  n[t],t]

Table[f,  {i,  imin,  imax}] - makes  a table  in list  format  of the  function  f

with  i values  that  run  from  imin  to imax  - e.g.  Table[i,  {i,  1,4}]  gives  {1,2,3,4}.

Libraries

Mathematica has  some  libraries  or packages  that  it does  not  load  automatically.

The  Documentation  Center  will  tell  you  if a function  needs  a library.

For  example,  to plot  error  bars  on  a list  plot,  you  will  need:

In[60]:= Needs ["ErrorBarPlots` "]

General : ErrorBarPlots` is now obsolete . The legacy version being loaded may conflict with current functionality .

See the Compatibility Guide for updating information .

    29



ErrorListPlot [{{{1, 1}, ErrorBar [0.2]}, {{2, 2}, ErrorBar [0.1]},

{{3, 4}, ErrorBar [0.3]}, {{4, 6}, ErrorBar [0.4]}, {{5, 7}, ErrorBar [0.8]}},

Joined → True, PlotRange → {{0, 6}, {0, 8}}]
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