class: title-slide, middle <style type="text/css"> .title-slide { background-image: url('assets/img/bg.jpg'); background-color: #23373B; background-size: contain; border: 0px; background-position: 600px 0; line-height: 1; } </style> # Model evaluation with ecological data <hr width="65%" align="left" size="0.3" color="orange"></hr> ## Introduction <hr width="65%" align="left" size="0.3" color="orange" style="margin-bottom:40px;" alt="@Martin Sanchez"></hr> .instructors[ **ECL707/807** - Dominique Gravel ] <img src="assets/img/logo.png" width="25%" style="margin-top:20px;"></img> <img src="assets/img/Bios2_reverse.png" width="23%" style="margin-top:20px;margin-left:35px"></img> --- # Let's start with a simple problem <div style='text-align:center;'> <img src="assets/img/coates.png" width="300px"></img> </div> Coates and Burton (1999) studied the effect of light availability on the annual height increment as a function of an index of light availability, 5 years after they were planted. --- # Let's start with a simple problem <div style='text-align:center;'> <img src="assets/img/coates.png" width="300px"></img> </div> What could you tell from the data ? --- # Let's start with a simple problem <div style='text-align:center;'> <img src="assets/img/coates.png" width="300px"></img> </div> How would you fit a curve into this ? --- # Let's start with a simple problem <div style='text-align:center;'> <img src="assets/img/coates.png" width="300px"></img> </div> What equation to pick ? --- class: inverse, middle, center # Now try it ! <hr width="65%" size="0.3" color="orange" style="margin-top:-20px;"></hr> --- # Let's start with a simple problem <div style='text-align:center;'> <img src="assets/img/coates.png" width="300px"></img> </div> What are the uncertainties in your model ? --- # Let's start with a simple problem <div style='text-align:center;'> <img src="assets/img/coates.png" width="300px"></img> </div> What will happen if we sample more ? --- # Let's start with a simple problem <div style='text-align:center;'> <img src="assets/img/coates.png" width="300px"></img> </div> Can we reduce this uncertainty ? --- class: inverse, middle, center # Why to develop modelling skills ? <hr width="65%" size="0.3" color="orange" style="margin-top:-20px;"></hr> --- # Develop innovative methods Objective : detect events of suppression and release of understory saplings using time series <div style='text-align:center;'> <img src="assets/img/canham.png" width="600px"></img> </div> *Gravel et al. 2010. Large-scale synchrony of gap dynamics and the distribution of understory tree species in maple-beech forests. Oecologia 162 : 153-161.* --- # Complex probabilistic problems Objective : evaluate a logistic model with presence only-data <div style='text-align:center;'> <img src="assets/img/bartomeus.png" width="850px"></img> </div> *Bartomeus et al. 2016. A common framework for identifying linkage rules across different types of interactions. Functional Ecology 30: 1894-1903* --- # Complex probabilistic problems Objective : evaluate non-stationary auto-regressive multivariate models <div style='text-align:center;'> <img src="assets/img/autoregression.png" width="800px"></img> </div> *Gravel et al. Evidence of critical slowing down of interaction networks before physiological meltdown. In prep.* --- # Transfer of information across scales Objective : make sure that a species distribution model evaluated at continental scale is coherent with experiments done at the micro scale <div style='text-align:center;'> <img src="assets/img/talluto.png" width="800px"></img> </div> *Talluto et al. 2016. Cross-scale integration of knowledge for predicting species ranges : a metamodelling framework. Global Ecology and Biogeography 25 : 238-249.* --- # Use all information available Objective : how to evaluate mortality rate of rare tropical trees with very few observations ? <div style='text-align:center;'> <img src="assets/img/soberania.jpg" width="250px"></img> </div> *Condit et al. 2006. The importance of dempraphic niches to tree diversity. Science 313: 98-101.* --- # Other motivations - Philosophical motivation - Representation of uncertainty - Adaptive modelling - Better understand statistics --- class: inverse, middle, center # What about you ? <hr width="65%" size="0.3" color="orange" style="margin-top:-20px;"></hr> --- # Logistics - On site and remote teaching - Lectures are recorded - Priority to exercises and problems - Minimal interactive lectures - Participation Any other suggestion ? --- # Content 1. Probabilities 2. Maximum likelihood estimation 3. Algorithms for optimization 4. Bayesian models 5. Algorithms for posterior distributions --- # Expectations - Write down an equation for likelihood and code it in R - Develop an algorithm to find the maximum likelihood estimates - Have some notions of the philosophies of satistical inferrence - Develop the full equation for the posterior distribution - Estimate posterior distribution by MCMC for a simple regression problem --- # Evaluation - Pass or fail based on participation and progress - Auto-evaluation form at the end of the course - Possibility of doing a supervised project as a side